Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis

Author:

Weatherspoon Howard1ORCID,Peters Baron12ORCID

Affiliation:

1. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign 1 , Urbana, Illinois 61801, USA

2. Department of Chemistry, University of Illinois at Urbana-Champaign 2 , Urbana, Illinois 61801, USA

Abstract

Magic clusters are metastable faceted nanoparticles that are thought to be important and, sometimes, observable intermediates in the nucleation of certain faceted crystallites. This work develops a broken bond model for spheres with a face-centered-cubic packing that form tetrahedral magic clusters. With just one bond strength parameter, statistical thermodynamics yield a chemical potential driving force, an interfacial free energy, and free energy vs magic cluster size. These properties exactly correspond to those from a previous model by Mule et al. [J. Am. Chem. Soc. 143, 2037 (2021)]. Interestingly, a Tolman length emerges (for both models) when the interfacial area, density, and volume are treated consistently. To describe the kinetic barriers between magic cluster sizes, Mule et al. invoked an energy parameter to penalize the two-dimensional nucleation and growth of new layers in each facet of the tetrahedra. According to the broken bond model, barriers between magic clusters are insignificant without the additional edge energy penalty. We estimate the overall nucleation rate without predicting the rates of formation for intermediate magic clusters by using the Becker–Döring equations. Our results provide a blueprint for constructing free energy models and rate theories for nucleation via magic clusters starting from only atomic-scale interactions and geometric considerations.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capture of small clusters by ligand–solvent interaction;The Journal of Chemical Physics;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3