Propagated (fragment) Pipek–Mezey Wannier functions in real-time time-dependent density functional theory

Author:

Schreder Lukas1ORCID,Luber Sandra1ORCID

Affiliation:

1. University of Zürich , Winterthurerstrasse 190, 8057 Zürich, Switzerland

Abstract

Localization procedures are an important tool for analysis of complex systems in quantum chemistry, since canonical molecular orbitals are delocalized and can, therefore, be difficult to align with chemical intuition and obscure information at the local level of the system. This especially applies to calculations obeying periodic boundary conditions. The most commonly used approach to localization is Foster–Boys Wannier functions, which use a unitary transformation to jointly minimize the second moment of the orbitals. This procedure has proven to be robust and fast but has a side effect of often mixing σ- and π-type orbitals. σ/π-separation is achieved by the Pipek–Mezey Wannier function (PMWF) approach [Lehtola and Jónsson, J. Chem. Theory Comput. 10, 642 (2014) and Jónsson et al., J. Chem. Theory Comput. 13, 460 (2017)], which defines the spread functional in terms of partial charges instead. We have implemented a PMWF algorithm in the CP2K software package using the Cardoso–Souloumiac algorithm to enable their application to real-time time-dependent density functional theory. The method is demonstrated on stacked CO2 molecules, linear acetylenic carbon, boron and nitrogen co-doped graphene, and nitrogen-vacancy doped diamond. Finally, we discuss its computational scaling and recent efforts to improve it with fragment approaches.

Funder

Swiss National Science Foundation

Swiss National Supercomputing Center

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3