Exploration of Stokes hydrodynamic law at molecular length scales

Author:

Acharya Subhajit1ORCID,Bagchi Biman1ORCID

Affiliation:

1. Solid State and Structural Chemistry Unit, Indian Institute of Science , Bengaluru, India

Abstract

The celebrated generalized Stokes law predicts that the velocity of a particle pulled through a liquid by an external force, Fex, is directly proportional to the force and inversely proportional to the friction ζ acted by the medium on the particle. We investigate the range of validity of the generalized Stokes law at molecular length scales by employing computer simulations to calculate friction by pulling a tagged particle with a constant force. We thus calculate friction for two model interaction potentials, Lennard-Jones and soft sphere, for several particle sizes, ranging from radius (a) smaller than the solvent particles to three times larger. We next obtain friction from diffusion (D) by using Einstein’s relation between diffusion and friction ζ in an unperturbed liquid. We find a quantitative agreement between the two at a small-to-intermediate pulling force regime for all the sizes studied. The law does break down at a large pulling force beyond a threshold value. Importantly, the range of validity of Stokes’ scheme to obtain friction increases substantially if we turn off the attractive part of the interaction potential. Additionally, we calculate the viscosity (η) of the unperturbed liquid and find a good agreement with the Stokes–Einstein relation ζ = Cηa for the viscosity dependence with a value of C close to 5 π, which is intermediate between the slip and stick boundary condition.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Origins of Turbulence;Meteorology;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3