Spin polarization gate device based on the chirality-induced spin selectivity and robust nonlocal spin polarization

Author:

Shishido Hiroaki1ORCID,Hosaka Yuta2,Monden Kenta2ORCID,Inui Akito2,Sayo Taisei2,Kousaka Yusuke1ORCID,Togawa Yoshihiko13ORCID

Affiliation:

1. Department of Physics and Electronics, Osaka Metropolitan University 1 , Sakai, Osaka 599-8531, Japan

2. Department of Physics and Electronics, Osaka Prefecture University 2 , Sakai, Osaka 599-8531, Japan

3. Quantum Research Center for Chirality, Institute for Molecular Science 3 , Okazaki 444-8585, Japan

Abstract

Nonlocal spin polarization phenomena are thoroughly investigated in the devices made of chiral metallic single crystals of CrNb3S6 and NbSi2 as well as of polycrystalline NbSi2. We demonstrate that simultaneous injection of charge currents in the opposite ends of the device with the nonlocal setup induces the switching behavior of spin polarization in a controllable manner. Such a nonlocal spin polarization appears regardless of the difference in the materials and device dimensions, implying that the current injection in the nonlocal configuration splits spin-dependent chemical potentials throughout the chiral crystal even though the current is injected into only a part of the crystal. We show that the proposed model of the spin dependent chemical potentials explains the experimental data successfully. The nonlocal double-injection device may offer significant potential to control the spin polarization to large areas because of the nature of long-range nonlocal spin polarization in chiral materials.

Funder

Japan Society for the Promotion of Science

Toyota RIKEN

Joint Research by Institute for Molecular Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3