Review on optical nonlinearity of group-IV semiconducting materials for all-optical processing

Author:

Cheng Chih-Hsien12ORCID,Fu Cai-Syuan1,Wang Huai-Yung1,Set Sze Yun2ORCID,Yamashita Shinji2,Lin Gong-Ru13ORCID

Affiliation:

1. Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, and National Taiwan University (NTU), Taipei 10617, Taiwan

2. Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan

3. NTU-Tektronix Joint Research Center, National Taiwan University, Taipei 10617, Taiwan

Abstract

Group-IV semiconductor compounds with intense optical nonlinearity have emerged as a new branch of all-optical processing materials benefiting from the manufacturing compatibility with silicon electronic and photonic integrated circuits. Due to the chemical reforming on the bonding or precipitating feature of the compositional atoms in the membrane matrix, either the orbital hybridization or the quantum self-assembly of interstitial composites can be employed to reform the electronic and optical characteristics. The recent development on enhancing the nonlinear refractive indices of the group-IV semiconductor materials has revealed significant progress to accelerate the all-optical switching logic, which greatly reduces the energy consumption to enable the constitution of the advanced multi-logic gating and the entry-level photonic computing circuits. This work not only overviews the group-IV semiconductor photonic data processing elements but also prospects for the future direction of optical quantum computation and communication. To date, the nonlinear refractive indices of the group-IV semiconductor materials can be obtained as 10−8 to 10−16 cm2/W in the range between 300 and 10 000 nm in 2022. The wavelength conversion and data switching with bit rate beyond 25 Gbps have been achieved via nonlinear photonic waveguide components. By taking the non-stoichiometric SiC-made micro-ring waveguide as an example, the n2 as high as 3.05 × 10−14 cm2/W of the resonant SiC micro-ring gate is retrieved from the pump–probe analysis. The eye-diagram of the wavelength converted data in the micro-ring achieves its signal-to-noise and on/off-extinction ratios (SNR and ER) of 5.6 and 11.8 dB, while up to 25-Gbps all-optical data-format inversion with 4.8-dB SNR and 10.2-dB ER is also performed during an ultrafast switching within rising and falling time of less than 22 ps. Such all-optical data processing including both wavelength switching and format conversion in the highly nonlinear optical SiC waveguide resonator can achieve error-free operation with corresponding bit-error-ratios of lower than 1 × 10−5 at 25 Gbps after forward error correction.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3