Affiliation:
1. Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Xiamen University , Xiamen 361005, People's Republic of China
Abstract
The emerging semiconductor spintronics has offered a practical routine for developing high-speed and energy-efficient electronic and optoelectronic devices. GaN holds broad prospects for room-temperature spintronic applications due to its weak spin scattering and moderate spin–orbit coupling. However, the development of GaN-based spintronic devices is still hindered by the relatively low spin injection efficiency and gate controllability. In this study, gate-modulated spin transport was achieved in a highly spin-polarized GaN-based non-local spin valve. A maximum spin diffusion length of 510 nm and a high spin polarization of 14.1% was obtained with the CoFeB/MgO tunnel spin injector. By applying gate voltages from −3 to +3 V, the spin-dependent magnetoresistance can be tuned in the range of 1.6–3.9 Ω. The modulation is attributed to the controllable spin relaxation of electrons by the gate electric field. This work has demonstrated high spin polarization and exceptional electric controllability in GaN, pushing forward the research in spin field-effect transistors.
Funder
National Key Research and Development Program of China
National Science Fund for Excellent Young Scholars
National Natural Science Foundation of China
Natural Science Foundation of Xiamen City
Basic Research Funds for Central Universities
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献