Study on the impact of N/Ne impurity seeding on neutrals in HL-2A tokamak

Author:

Tan Qingyi1ORCID,Wang Zhe1ORCID,Ye Haoran1,Huang Qianhong1ORCID,Gong Xueyu1ORCID,Zhong Yijun1ORCID,Cao Chengzhi2ORCID,Wang Zhanhui2ORCID,Fu Cailong2,Yang Tao13

Affiliation:

1. University of South China 1 , Hengyang 421001, China

2. Southwestern Institute of Physics 2 , Chengdu 610041, People's Republic of China

3. Radiotherapy Center, Huangshi Central Hospital 3 , Huangshi, Hubei 435000, China

Abstract

Impurity seeding is the major technology for divertor power exhaust. In this work, the impact of N and Ne impurity seeding on the behavior of neutrals in the divertor region was systematically studied based on the HL-2A tokamak. The results demonstrated a strong correlation between the target deuterium molecular density and the target electron temperature after N/Ne impurity seeding. In addition, it was found that deuterium atoms played a more important role in reducing the electron temperature of the target after the Ne impurity injection at Te <15 eV than that of N seeding. Moreover, the deuterium radiation atom excitation channel was stronger after the Ne impurity injection than the N impurity. It was also found that the N impurity radiation in the divertor can reach several times of the Ne impurity radiation under the high upstream density conditions. The core effective charge number Zeff was larger after the Ne impurity injection than N impurity injection, indicating that the Ne impurity was more likely to dilute the plasma.

Funder

National Key Research and Development Program of China

Hengyang Science and Technology Board

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3