Implement quantum tomography of polarization-entangled states via nondiffractive metasurfaces

Author:

Wang Zheng1,Jiang Yue1,Gao Ya-Jun1,Fan Ren-Hao1ORCID,Qi Dong-Xiang1,Zhong Rui1,Zhang Hu-Lin1,Peng Ru-Wen1ORCID,Wang Mu12ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

2. American Physical Society, Ridge, New York 11961, USA

Abstract

Traditional optical elements, such as waveplates and polarization beam splitters, are essential for quantum state tomography (QST). Yet, their bulky size and heavy weight are prejudicial for miniaturizing quantum information systems. Here, we introduce nondiffractive silicon metasurfaces with high transmission efficiency to replace the traditional optical elements for QST of polarization-entangled states. Two identical silicon metasurfaces are employed, and each metasurface comprises four independent districts on a micrometer scale. The unit cell of each district consists of two silicon nanopillars with different geometrical sizes and orientation angles, and the interference of the scattered waves from the nanopillars leads to a single output beam from the district with a specific polarization state with a transmission efficiency above 92%. When the two-photon polarization-entangled state shines on different districts of two metasurfaces, each photon of the photon pair interacts with the local nanopillars within the district, and the two-photon state is projected onto 16 polarization bases for state reconstruction. We experimentally demonstrate the reconstruction of four input Bell states with high fidelities. This approach significantly reduces the number of conventional optical components in the QST process and is inspiring for advancing quantum information technology.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3