Auxetic polymer networks: The role of crosslinking, density, and disorder

Author:

Ninarello Andrea12ORCID,Ruiz-Franco José13ORCID,Zaccarelli Emanuela12ORCID

Affiliation:

1. CNR Institute of Complex Systems, Uos Sapienza 1 , Piazzale Aldo Moro 2, 00185 Roma, Italy

2. Department of Physics, Sapienza University of Rome 2 , Piazzale Aldo Moro 2, 00185 Roma, Italy

3. Physical Chemistry and Soft Matter, Wageningen University and Research 3 , Stippeneng 4, 6708WE Wageningen, The Netherlands

Abstract

Low-crosslinked polymer networks have recently been found to behave auxetically when subjected to small tensions, that is, their Poisson’s ratio ν becomes negative. In addition, for specific state points, numerical simulations revealed that diamond-like networks reach the limit of mechanical stability, exhibiting values of ν = −1, a condition that we define as hyper-auxeticity. This behavior is interesting per se for its consequences in materials science but is also appealing for fundamental physics because the mechanical instability is accompanied by evidence of criticality. In this work, we deepen our understanding of this phenomenon by performing a large set of equilibrium and stress–strain simulations in combination with phenomenological elasticity theory. The two approaches are found to be in good agreement, confirming the above results. We also extend our investigations to disordered polymer networks and find that the hyper-auxetic behavior also holds in this case, still manifesting a similar critical-like behavior as in the diamond one. Finally, we highlight the role of the number density, which is found to be a relevant control parameter determining the elastic properties of the system. The validity of the results under disordered conditions paves the way for an experimental investigation of this phenomenon in real systems, such as hydrogels.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3