Exploring predictive states via Cantor embeddings and Wasserstein distance

Author:

Loomis Samuel P.1ORCID,Crutchfield James P.1ORCID

Affiliation:

1. Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA

Abstract

Predictive states for stochastic processes are a nonparametric and interpretable construct with relevance across a multitude of modeling paradigms. Recent progress on the self-supervised reconstruction of predictive states from time-series data focused on the use of reproducing kernel Hilbert spaces. Here, we examine how Wasserstein distances may be used to detect predictive equivalences in symbolic data. We compute Wasserstein distances between distributions over sequences (“predictions”) using a finite-dimensional embedding of sequences based on the Cantor set for the underlying geometry. We show that exploratory data analysis using the resulting geometry via hierarchical clustering and dimension reduction provides insight into the temporal structure of processes ranging from the relatively simple (e.g., generated by finite-state hidden Markov models) to the very complex (e.g., generated by infinite-state indexed grammars).

Funder

Army Research Office

Templeton World Charity Foundation

Foundational Questions Institute

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference36 articles.

1. D. R. Upper, “Theory and algorithms for hidden Markov models and generalized hidden Markov models,” Ph.D. thesis (University of California, Berkeley, 1997).

2. Inferring statistical complexity

3. Observable Operator Models for Discrete Stochastic Time Series

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3