Linear stability of a rotating channel flow subjected to a static magnetic field

Author:

Sengupta Saunak1ORCID,Ghosh Sukhendu2ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

2. Department of Mathematics, Indian Institute of Technology Jodhpur, Rajasthan 342037, India

Abstract

Magnetohydrodynamics is effective to control the instabilities of fluid flows. This control process is cost-effective and compact because it does not require extra mechanical components. In the present study, the effect of a constant uniform magnetic field on the linear stability of a rotating channel flow is investigated. The electromagnetic field is applied in the spanwise direction alongside the axis of rotation. The Hartmann and rotation numbers characterize the magnetic and rotational effects. The axial flow is governed by the centrifugal force, and the Coriolis force due to rotation makes the flow unstable at relatively low Reynolds numbers concerning spanwise disturbances. The modal instabilities of the flow are captured by solving the Orr–Sommerfeld–Squire eigenvalue problem. Numerical results confirm that the employed magnetic force has a prominent stabilizing role on the linear instabilities of the rotating channel flow. Notably, the higher Hartmann numbers suppress the temporal growth of the most unstable mode and decrease the area of neutral stability boundaries. The onset of rotational instability occurs at a higher critical Reynolds number for a stronger magnetic field. Further, the presence of Lorentz force restricts the co-existence of multiple unstable modes and the mode competition phenomenon, which results in structure modification of roll-cells and tardy secondary flow. The findings of this investigation would be useful in designing bio-medical and mechanical tools where the rotational instabilities are harmful. Furthermore, it is hoped that the obtained results will motivate the experimental verification and look for worthy applications.

Funder

Science and Engineering Research Board

Science and Engineering Research Board, Department of Science and Technology, Government of India through

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3