Development of visible light tomographic imaging system for field-reversed configuration collisional merging experiment

Author:

Seki T.1ORCID,Yamanaka T.1,Asai T.1ORCID,Kobayashi D.1ORCID,Takahashi T.1ORCID,Morelli J.2,Okada S.1,Gota H.3ORCID

Affiliation:

1. College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

2. Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario K7L 3N6, Canada

3. TAE Technologies, Inc., Foothill Ranch, California 92610, USA

Abstract

A visible light tomographic imaging system has been developed for the collisional merging experiment of field-reversed configurations (FRCs) on the FRC Amplification via Translation–Collisional Merging device at Nihon University. Two FRCs formed by field-reversed theta-pinch translate at super-Alfvénic velocity and collide with each other. The translation and collision processes are completed in 20–30 µs, and a single FRC is reformed in ∼70 µs. To study these translation and collisional merging processes, the tomographic system, including fast response tomographic cameras and a reconstruction method assuming a Rigid-Rotor (RR) model, is developed. The developed tomographic cameras simply consist of 16 channels of multi-anode photomultipliers, a band-pass filter, a slit, and a cylindrical lens, which expands the viewing angle. Because the viewing angle is limited by the size of the viewports of the metal chamber, the iterative method assuming the RR model has been applied to reconstruct tomographic images from a small number of projections. The developed tomographic imaging system can estimate the behavior of FRCs. Four cameras are installed in the two cross sections near the collision point. The radial shift of each translated FRC can be calculated by this system. Details of the developed tomographic camera system and RR reconstruction method are reported.

Funder

Japan Society for the Promotion of Science

Nihon University

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3