Noise suppression for an aeromagnetic measurement system on an unmanned helicopter

Author:

Li J.1ORCID,Ge J.234ORCID,Zhang G.1,Li Y.1,Wu L.1,Wu X.1,Fan S.234ORCID

Affiliation:

1. Airborne Survey and Remote Sensing Center of Nuclear Industry 1 , Shijiazhuang 050002, China

2. School of Automation, China University of Geosciences 2 , Lumo Road, Wuhan 430074, China

3. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems 3 , Lumo Road, Wuhan 430074, China

4. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education 4 , Lumo Road, Wuhan 430074, China

Abstract

An unmanned helicopter is one of the main platforms for conducting unmanned aerial vehicle aeromagnetic measurements and combines the advantages of rotary-wing and fixed-wing unmanned aerial vehicles. However, unmanned helicopter-based aeromagnetic measurement systems face complex static magnetic noise and maneuvering magnetic interference, which limit their practical performance. To address this issue, an improved multi-channel frequency measurement algorithm for the optically pumped magnetic sensor is proposed to suppress the static magnetic noise proportional to the frequency noise generated by the random quantization error and the airborne electromagnetic interference. A novel aeromagnetic compensation method for the maneuvering magnetic interference is then proposed to weaken the negative effects of the strong multicollinearity of the attitude parameters of the unmanned helicopter on the compensation accuracy and stability by introducing a regularization term and weight matrix. In addition, dedicated software is developed for the real-time calculation and compensation of magnetic interference fields. A dedicated unmanned-helicopter-based aeromagnetic measurement system is developed, and ground and flight experiments are carried out. The ground test results indicate that the static noise of the proposed system is only 0.000 82 nT. In the flight experiments, the system achieves an improvement ratio of 8.33, which is higher than the improvement ratio of 4.37 for a state-of-the-art commercial compensator. Furthermore, the dynamic noise after compensation decreases by 37.6% from 0.0157 to 0.0098 nT.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Young Top-Notch Talent Cultivation Program of Hubei Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3