Control of coupled neural oscillations using near-periodic inputs

Author:

Toth Kaitlyn1,Wilson Dan1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA

Abstract

Deep brain stimulation (DBS) is a commonly used treatment for medication resistant Parkinson’s disease and is an emerging treatment for other neurological disorders. More recently, phase-specific adaptive DBS (aDBS), whereby the application of stimulation is locked to a particular phase of tremor, has been proposed as a strategy to improve therapeutic efficacy and decrease side effects. In this work, in the context of these phase-specific aDBS strategies, we investigate the dynamical behavior of large populations of coupled neurons in response to near-periodic stimulation, namely, stimulation that is periodic except for a slowly changing amplitude and phase offset that can be used to coordinate the timing of applied input with a specified phase of model oscillations. Using an adaptive phase-amplitude reduction strategy, we illustrate that for a large population of oscillatory neurons, the temporal evolution of the associated phase distribution in response to near-periodic forcing can be captured using a reduced order model with four state variables. Subsequently, we devise and validate a closed-loop control strategy to disrupt synchronization caused by coupling. Additionally, we identify strategies for implementing the proposed control strategy in situations where underlying model equations are unavailable by estimating the necessary terms of the reduced order equations in real-time from observables.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven model identification using forcing-induced limit cycles;Physica D: Nonlinear Phenomena;2024-03

2. The influence of synaptic plasticity on critical coupling estimates for neural populations;Journal of Mathematical Biology;2024-03

3. Reduced Order Characterization of Nonlinear Oscillations Using an Adaptive Phase-Amplitude Coordinate Framework;SIAM Journal on Applied Dynamical Systems;2024-01-29

4. Desynchronizing two oscillators while stimulating and observing only one;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-07-01

5. Koopman Operator Inspired Nonlinear System Identification;SIAM Journal on Applied Dynamical Systems;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3