Integration of conventional surface science techniques with surface-sensitive azimuthal and polarization dependent femtosecond-resolved sum frequency generation spectroscopy

Author:

Huang ZhipengORCID,Roos Tobias,Tong YujinORCID,Campen R. KramerORCID

Abstract

Experimental insight into the elementary processes underlying charge transfer across interfaces has blossomed with the wide-spread availability of ultra-high vacuum (UHV) setups that allow the preparation and characterization of solid surfaces with well-defined molecular adsorbates over a wide range of temperatures. Within the last 15 years, such insights have extended to charge transfer heterostructures containing solids overlain by one or more atomically thin two dimensional materials. Such systems are of wide potential interest both because they appear to offer a path to separate surface reactivity from bulk chemical properties and because some offer completely novel physics, unrealizable in bulk three dimensional solids. Thick layers of molecular adsorbates or heterostructures of 2D materials generally preclude the use of electrons or atoms as probes. However, with linear photon-in/photon-out techniques, it is often challenging to assign the observed optical response to a particular portion of the interface. We and prior workers have demonstrated that by full characterization of the symmetry of the second order nonlinear optical susceptibility, i.e., the χ(2), in sum frequency generation (SFG) spectroscopy, this problem can be overcome. Here, we describe an UHV system built to allow conventional UHV sample preparation and characterization, femtosecond and polarization resolved SFG spectroscopy, the azimuthal sample rotation necessary to fully describe χ(2) symmetry, and sufficient stability to allow scanning SFG microscopy. We demonstrate these capabilities in proof-of-principle measurements on CO adsorbed on Pt(111) and on the clean Ag(111) surface. Because this setup allows both full characterization of the nonlinear susceptibility and the temperature control and sample preparation/characterization of conventional UHV setups, we expect it to be of great utility in the investigation of both the basic physics and applications of solid, 2D material heterostructures.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

AIP Publishing

Reference108 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3