Discontinuous phase transition switching induced by a power-law function between dynamical parameters in coupled oscillators

Author:

Wang Jiangsheng1ORCID,Gu Changgui1ORCID,Xu Yan1,Zou Wei2ORCID

Affiliation:

1. Department of Systems Science, Business School, University of Shanghai for Science and Technology 1 , Shanghai 200093, China

2. School of Mathematical Sciences, South China Normal University 2 , Guangzhou 510631, China

Abstract

In biological or physical systems, the intrinsic properties of oscillators are heterogeneous and correlated. These two characteristics have been empirically validated and have garnered attention in theoretical studies. In this paper, we propose a power-law function existed between the dynamical parameters of the coupled oscillators, which can control discontinuous phase transition switching. Unlike the special designs for the coupling terms, this generalized function within the dynamical term reveals another path for generating the first-order phase transitions. The power-law relationship between dynamic characteristics is reasonable, as observed in empirical studies, such as long-term tremor activity during volcanic eruptions and ion channel characteristics of the Xenopus expression system. Our work expands the conditions that used to be strict for the occurrence of the first-order phase transitions and deepens our understanding of the impact of correlation between intrinsic parameters on phase transitions. We explain the reason why the continuous phase transition switches to the discontinuous phase transition when the control parameter is at a critical value.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3