Suppression of negative transfer in motor imagery brain–computer interface based on mutual information and Pearson correlation coefficient

Author:

Zhu Fenfang1,Cai Jicheng2ORCID,Zheng Hao2ORCID,Liang Zilin2,Zhang Yue2ORCID

Affiliation:

1. School of Life Sciences, Anhui University 1 , Hefei 230000, China

2. Center of Artificial Intelligence, Hangzhou Innovation Institute, Beihang University 2 , Hangzhou, Zhejiang Province 310000, China

Abstract

The focus of this paper is on the main challenges in brain–computer interface transfer learning: how to address data characteristic length and the source domain sample selection problems caused by individual differences. To overcome the negative migration that results from feature length, we propose a migration algorithm based on mutual information transfer (MIT), which selects effective features by calculating the entropy value of the probability distribution and conditional distribution, thereby reducing negative migration and improving learning efficiency. Source domain participants who differ too much from the target domain distribution can affect the overall classification performance. On the basis of MIT, we propose the Pearson correlation coefficient source domain automatic selection algorithm (PDAS algorithm). The PDAS algorithm can automatically select the appropriate source domain participants according to the target domain distribution, which reduces the negative migration of participant data among the source domain participants, improves experimental accuracy, and greatly reduces training time. The two proposed algorithms were tested offline and online on two public datasets, and the results were compared with those from existing advanced algorithms. The experimental results showed that the MIT algorithm and the MIT + PDAS algorithm had obvious advantages.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

AIP Publishing

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3