Computing the solution trajectories, steady state approximation, and sensitivity analysis in complex chemical reaction mechanism

Author:

Sultan Faisal1ORCID,Lodhi Muhammad Wasim1,Fatima Rida1ORCID,Ishaq Muhammad Shoaib1ORCID,Chambashi Gilbert2ORCID

Affiliation:

1. Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology 1 , Rahimyar Khan, Pakistan

2. School of Business Studies, Unicaf University, Longacres 2 , Lusaka, Zambia

Abstract

Ordinary differential equations are often employed in chemical kinetics mathematical modeling. The theoretical results for a model of a multi-step chemical kinetic process are presented in this article. This model seeks to describe both the complicated kinetics of complex chemical processes and the steady state behavior of chemical species. Reduction techniques are used to divide fast and slow processes according to their time scales, which simplifies the model. As a result, the quick processes are removed, making the slow processes the main emphasis of a reduced-dimensional model. The paper concentrates on a two-step reversible reaction mechanism for model reduction, which reduces the complexity of the entire reaction process. The phase flow of solution trajectories close to equilibrium points is also given special consideration in the analysis as it offers a clear and pertinent depiction of the behavior of the system. The physical properties of the observed data are further shown via MATLAB simulations. Sensitivity analysis computes parameters, revealing their impact on species behavior, visually presenting the parameter impact.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3