Affiliation:
1. Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
Abstract
Quantum spin liquids have been drawing much attention in recent years as a platform to develop future quantum technologies, such as topological quantum computing. In particular, Kitaev’s honeycomb model has provided a blueprint to realize a quantum spin liquid that has Majorana fermions as its elementary excitation. While numerous theoretical studies have shown intriguing properties of quantum spin liquids, an experimental realization remains elusive. The recent observation of the quantized thermal Hall effect in α-RuCl3 has brought us tantalizingly close to an experimental realization of Kitaev quantum spin liquids. However, various groups report conflicting results, indicating that the Kitaev quantum spin liquid phase might be very fragile and its properties strongly depend on the sample. Here, we present a short overview of the rise of α-RuCl3 as a prime candidate material for realizing Kitaev quantum spin liquids. There are already many excellent review papers on this topic, so the emphasis will be on the materials aspect, comparing different crystal growth methods and crystal morphologies. We also discuss current research attempts to find other candidate materials to realize Kitaev quantum spin liquids, mostly focused on 3d transition-metal compounds, such as transition-metal halides and layered cobalt compounds.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
Government of Ontario
Subject
General Engineering,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献