Delta synchronization of Poincaré chaos in gas discharge-semiconductor systems

Author:

Akhmet Marat1ORCID,Başkan Kaǧan2ORCID,Yeşil Cihan2ORCID

Affiliation:

1. Middle East Technical University, Department of Mathematics, Dumlupinar Boulevard, Ankara 06800, Turkey

2. Middle East Technical University, Department of Physics, Dumlupinar Boulevard, Ankara 06800, Turkey

Abstract

We introduce a new type of chaos synchronization, specifically the delta synchronization of Poincaré chaos. The method is demonstrated for the irregular dynamics in coupled gas discharge-semiconductor systems (GDSSs). It is remarkable that the processes are not generally synchronized. Our approach entirely relies on ingredients of the Poincaré chaos, which in its own turn is a consequence of the unpredictability in Poisson stable motions. The drive and response systems are in the connection, such that the latter is processed through the electric potential of the former. The absence of generalized synchronization between these systems is indicated by utilizing the conservative auxiliary system. However, the existence of common sequences of moments for finite convergence and separation confirms the delta synchronization. This can be useful for complex dynamics generation and control in electromagnetic devices. A bifurcation diagram is constructed to separate stable stationary solutions from non-trivial oscillatory ones. Phase portraits of the drive and response systems for a specific regime are provided. The results of the sequential test application to indicate the unpredictability and the delta synchronization of chaos are demonstrated in tables. The computations of the dynamical characteristics for GDSSs are carried out by using COMSOL Multiphysics version 5.6 and MATLAB version R2021b.

Funder

TUBITAK

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3