Phonon transport in the gigahertz to terahertz range: Confinement, topology, and second sound

Author:

Vasileiadis Thomas1ORCID,Reparaz Juan Sebastian2ORCID,Graczykowski Bartlomiej1ORCID

Affiliation:

1. Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland

2. Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain

Abstract

Transport of heat and hypersound with gigahertz (GHz) to terahertz (THz) phonons is crucial for heat management in electronics, mediating signal processing with microwave radiation, thermoelectrics, and various types of sensors based on nanomechanical resonators. Efficient control of heat and sound transport requires new materials, novel experimental techniques, and a detailed knowledge of the interaction of phonons with other elementary excitations. Wave-like heat transport, also known as second sound, has recently attracted renewed attention since it provides several opportunities for overcoming some of the limitations imposed by diffusive transport (Fourier’s regime). The frequency-domain detection of GHz-to-THz phonons can be carried out in a remote, non-destructive, and all-optical manner. The ongoing development of nanodevices and metamaterials made of low-dimensional nanostructures will require spatially resolved, time-resolved, and anisotropic measurements of phonon-related properties. These tasks can be accomplished with Brillouin light scattering (BLS) and various newly developed variants of this method, such as pumped-BLS. In the near future, pumped-BLS is expected to become useful for characterizing GHz topological nanophononics. Finally, second-sound phenomena can be observed with all-optical methods like frequency-domain thermoreflectance.

Funder

H2020 Marie Skłodowska-Curie Actions

Polish National Science Center

Spanish Ministerio de Economia, Industria y Competitividad

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3