Pinhole mirror-based ultra-small angle light scattering setup for simultaneous measurement of scattering and transmission

Author:

Ali Samim1ORCID,Mao Yimin23ORCID,Prabhu Vivek M.1ORCID

Affiliation:

1. Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA

2. Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA

3. Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA

Abstract

An ultra-small angle light scattering setup with the ability of simultaneous registration of scattered light by a charge-coupled device camera and the transmitted direct beam by a pin photodiode was developed. A pinhole mirror was used to reflect the scattered light; the transmitted direct beam was focused and passed through the central pinhole with a diameter of 500 μm. Time-resolved static light scattering measurement was carried out over the angular range 0.2° [Formula: see text] 8.9° with a time resolution of ∼33 ms. The measured scattering pattern in the q-range between 5 × 10−5 and 1.5 × 10−3 nm−1 enables investigating structures of few micrometers to submillimeter, where q is the scattering vector. A LabVIEW-based graphical user interface was developed, which integrates the data acquisition of the scattering pattern and the transmitted intensity. The Peltier temperature-controlled sample cells of varying thicknesses allow for a rapid temperature equilibration and minimization of multiple scattering. The spinodal decomposition for coacervation (phase separation) kinetics of an aqueous mixture of oppositely charged polyelectrolytes was demonstrated.

Funder

National Institute of Standards and Technology

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3