Leading-to-trailing edge theoretical design of a generic scramjet

Author:

Carneiro R.1ORCID,Araújo P. P. B.2ORCID,Marinho G. S.23ORCID,Martos J. F. A.4ORCID,Passaro A.15ORCID,Toro P. G. P.1235ORCID

Affiliation:

1. Instituto Tecnológico de Aeronáutica (ITA), Programa de Pós-Graduação em Ciências e Tecnologias Espaciais, Praça Marechal Eduardo Gomes, 50, Vila das Acácias, CEP, 12228-900 São José dos Campos/SP, Brazil

2. Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-Graduação em Engenharia Aeroespacial, Av. Senador Salgado Filho, 3000, Campus Universitário, Lagoa Nova, CEP, 59078-970 Natal/RN, Brazil

3. Universidade Federal do Rio Grande do Norte (UFRN), Centro de Tecnologia, Av. Senador Salgado Filho, 3000, Campus Universitário, Lagoa Nova, CEP, 59078-970 Natal/RN, Brazil

4. Universidade Federal de Santa Maria (UFSM), Departamento de Engenharia Mecânica, Av, Roraima, 1000, Cidade Universitária Camobi, CEP, 97105-900 Santa Maria/RS, Brazil

5. Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, Putim, CEP, 12.228-001 São José dos Campos/SP, Brazil

Abstract

The aerospace vehicle flying at hypersonic speed, using an airbreathing propulsion system based on supersonic combustion (scramjet) technology, requires a highly integrated system without moving parts, making the propulsion system and vehicle shape indistinguishable. A scramjet uses shock waves, generated by its inlet during the hypersonic flight to provide the temperature and velocity of atmospheric air to burn the hydrogen, at the combustor at supersonic speed. The divergent exhaust nozzle accelerates the combustion products providing the thrust. A two-dimensional hydrogen-powered generic scramjet has been designed to demonstrate supersonic combustion in atmospheric flight at a Mach number of 6.8 and an altitude of 30 km. Temperature and velocity at the combustion chamber are the most important key parameters for a preliminary design. The inlet configuration must provide a temperature higher than the ignition temperature of the fuel to guarantee spontaneous combustion and the velocity must remain supersonics. The nozzle exit velocity should be higher than the vehicle flight velocity to obtain sustained flight and produce enough thrust. For this theoretical analysis, the air is considered a calorically perfect gas without viscous effects. The compressible flow is analyzed based on oblique shock waves and one-dimensional compressible flow with friction and heat addition and Prandtl–Meyer coupled to the area ratio to describe each key component of the scramjet, such as compression, combustor, and nozzle sections, respectively. The inlet mass flow and hydrogen mass flow are also critical for the scramjet design to ensure stoichiometrically combustion at the combustion chamber, generating the high flow velocity at the nozzle to produce thrust.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3