Affiliation:
1. School of Mechanical Engineering, Tongji University, Shanghai 200082, China
Abstract
To further reduce the power of exciter in the common fatigue testing methods and increase the testing frequency to decrease the fatigue testing time, this paper proposes an improved fatigue testing method—Tug Fatigue Testing system (TFTs). The advantages of this new fatigue testing method are low power and high testing frequency of its exciter due to no exciter with moving masses attached to the blade. In TFTs, exciters mounted on the ground or fixed bracket can be used to excite the blade in the uniaxial or biaxial fatigue test. In this paper, the mechanical model of TFTs is established to compare the motor power required by exciters in TFTs and the inertial exciters and the shear load on the blades in both ways. Furthermore, a test of a 56.5 m blade will be performed to verify the feasibility of the new method. In addition, the bending moment distribution of an 80 m blade excited by TFTs was measured and compared with the bending moment distribution of the same blade excited by inertial resonance excitation to evaluate its excitation effect. The test results prove that this improved method needs lower power of exciter, produces smaller shear loads, and provides a higher test frequency in the flap-wise test direction than common inertial resonance excitation. Biaxial fatigue tests can also be conducted by this new method.
Subject
General Physics and Astronomy
Reference25 articles.
1. Global Wind Energy Council, Global Wind Report 2021, 2021, [2022 3/27]; available at http://gwec.net/.
2. Cumulative Damage in Fatigue
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献