Elucidating phonon dephasing mechanisms in layered perovskites with coherent Raman spectroscopies

Author:

Gan Zijian1ORCID,Gloor Camryn J.1ORCID,Yan Liang1ORCID,Zhong Xiaowei1ORCID,You Wei1ORCID,Moran Andrew M.1ORCID

Affiliation:

1. Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, USA

Abstract

Organic–inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3