Computational prediction of new magnetic materials

Author:

Rahmanian Koshkaki Saeed123ORCID,Allahyari Zahed1ORCID,Oganov Artem R.1ORCID,Solozhenko Vladimir L.4ORCID,Polovov Ilya B.5,Belozerov Alexander. S.16ORCID,Katanin Andrey A.126ORCID,Anisimov Vladimir I.156,Tikhonov Evgeny V.17ORCID,Qian Guang-Rui7,Maksimtsev Konstantin V.5,Mukhamadeev Andrey S.5,Chukin Andrey V.5,Korolev Aleksandr V.56ORCID,Mushnikov Nikolay V.56ORCID,Li Hao189

Affiliation:

1. Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia

2. Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny 141700, Russia

3. Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA

4. LSPM-CNRS, Universite Sorbonne Paris Nord, 93430 Villetaneuse, France

5. Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia

6. M.N. Mikheev Institute of Metal Physics UB RAS, S. Kovalevskaya Str., 18, 620108 Ekaterinburg, Russia

7. International Center for Materials Discovery, Northwestern Polytechnical University, Xi'an 710072, China

8. CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China

9. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (| BH|MAX), anisotropy field ( H a), and magnetic hardness ( κ) and a few half-metal phases in the Cr–O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3