Electroporation from mitochondria to cell clusters: Model development toward analyzing electrically driven bioeffects over a large spatial range

Author:

Milestone W.1ORCID,Baker C.1,Garner A. L.234ORCID,Joshi R. P.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Texas Tech University 1 , Lubbock, Texas 79409, USA

2. School of Nuclear Engineering, Purdue University 2 , West Lafayette, Indiana 47907, USA

3. Elmore Family School of Electrical and Computer Engineering 3 , West Lafayette, Indiana 47907, USA

4. Department of Agricultural and Biological Engineering 4 , West Lafayette, Indiana 47907, USA

Abstract

A general, self-consistent scheme for analyzing cellular electroporation for bio-medical applications is developed to probe realistic biological shapes and different length scales ranging from nanometers to hundreds of micrometers. The COMSOL Multiphysics suite is used with suitable embellishments to incorporate the details of the electroporation (EP) process and the inherent internal physics. The results are obtained for the voltage pulse driven electroporation for a Jurkat cell with mitochondria (as an example organelle) where spatial dimensions on the order of a few nanometers become important, to hundreds of cells (with Bacillus as an example) where collective effects and mutual interactions can dominate. Thus, scalable computing to generalized geometries with the ability to include complex organelles is made available. The results obtained for mitochondrial EP in Jurkat cells compare well with available data. In addition, quantitative predictions of field attenuation and shielding in Bacillus clusters are made, which point to highly nonuniform field distributions and a strong need to engineer novel electrode designs.

Funder

Office of Naval Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3