Laser light absorption and Brewster angle on liquid metal

Author:

Volpp Joerg1ORCID

Affiliation:

1. Department of Engineering Sciences and Mathematics, Luleå University of Technology , 97187 Luleå, Sweden

Abstract

Laser light absorption occurs in all laser-based processes and is, therefore, of importance for process simulation input, parameter optimization, and understanding of the occurring phenomena, such as melt pool flow or vaporization effects. Theoretical models were successful in predicting metal absorption for certain cases but often fail in high-temperature situations due to unknown impacts of occurring effects, such as surface irregularities or contaminations. Measuring absorption at high temperatures is challenging, and there are limited literature data available on values further above melting temperatures of metals. In this work, a radiometric measurement method is used to derive absorption values at high temperatures. The results show shifted values from Fresnel predictions and absorption peaks at comparably low incident angles. The decreasing absorption tendency at low incident angles was shown to be possibly induced by multi-interface absorption effects caused by surface layering and Knudsen layer effects. Surface layering was seen to be able to induce a very low Brewster angle comparable to the observations in the measurements and is, therefore, seen as a possible dominant factor in absorption at elevated temperatures.

Funder

Vetenskapsrådet

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3