Evaluation of thermally regenerative electrochemical cycle for thermal-to-electrical energy conversion

Author:

Zhang Hang1ORCID,Wang Zhiyu1ORCID,Wang Qing12ORCID

Affiliation:

1. Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore 1 , Singapore 117574, Singapore

2. Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR) 2 , Singapore 138632, Singapore

Abstract

A significant amount of low-grade heat (< 100 °C) can be found in various sources, such as geothermal/solar sources, industrial plants, vehicles, and biological entities, but it is often wasted due to the absence of cost-effective and efficient recovery technologies. Thermally regenerative electrochemical cycle (TREC) represents a promising solution for effectively harnessing low-grade heat. Rapid advancements in TREC chemistry, materials, and design have established the crucial foundations for high-power, efficient, and long-lasting TREC systems. However, evaluating the potential of reported TREC systems of different types is challenging due to the inconsistency in evaluation metrics and methods. In this Perspective, we examine the working principle of various TREC systems, including the electrically powered TREC systems, charging-free TREC systems that solely convert thermal energy to electrical energy, and TREC systems that simultaneously provide high-power energy storage and thermal energy conversion. The critical performance metrics for each of these three types of TREC systems, such as absolute/apparent thermoelectric efficiency, power density, net electricity generation, various forms of energy loss, and thermal energy input, are presented to compare the thermoelectric performance across different types of TREC systems at various scales. In addition, some practical methods for measuring the critical parameters, current challenges, and future directions for practical applications are also highlighted.

Funder

National Research Foundation Singapore

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3