Fluid mode spectroscopy for measuring kinematic viscosity of fluids in open cylindrical containers

Author:

Abstract

On a daily basis, we stir tea or coffee with a spoon and leave it to rest. We know empirically the larger the stickiness, viscosity, of the fluid, the more rapidly its velocity slows down. It is surprising, therefore, that the variation, the decay rate of the velocity, has not been utilized for measuring (kinematic) viscosity of fluids. This study shows that a spectroscopy decomposing a velocity field into fluid modes (Stokes eigenmodes) allows us to accurately measure the kinematic viscosity. The method, fluid mode spectroscopy (FMS), is based on the fact that each Stokes eigenmode has its inherent decay rate of eigenvalue, and the dimensionless rate of the slowest decaying mode is constant, dependent only on the normalized shape of a fluid container, obtained analytically for some shapes including cylindrical containers. The FMS supplements major conventional measuring methods with each other, which is particularly useful for measuring relatively low kinematic viscosity and for a direct measurement of viscosity at zero shear rate without extrapolation. The method is validated by the experiments of water poured into an open cylindrical container, as well as by the corresponding numerical simulations.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3