Affiliation:
1. Department of Applied Mechanics, Indian Institute of Technology-Delhi 1 , Hauz Khas 110016, New Delhi, India
2. Department of Mechanical Engineering, Aligarh Muslim University 2 , Aligarh 202002, Uttar Pradesh, India
Abstract
The three-dimensional flow transition is examined in the wake of a heated square cylinder subjected to horizontal cross-flow perpendicular to gravity utilizing a direct numerical simulation approach. The surface of the square cylinder is heated uniformly to an elevated temperature Tw, and the amount of excess temperature is represented as the over-heat ratio ε=(Tw−T∞)/T∞, where T∞ represents the surrounding temperature. The effects of large-scale heating on the transport properties and thermal straining of the fluid particles are captured using an in-house non-Oberbeck–Boussinesq compressible model. The compressible flow governing equations (in a body-fitted coordinate system) are solved using a variant of flux-based particle velocity upwind-modified+ (PVU-M+) technique [Ahmad et al., “On the formation and sustenance of the compressible vortex rings in starting axisymmetric jets: A phenomenological approach,” Phys. Fluids 32, 126114 (2020)]. In this investigation, all computations are conducted at a low Mach number (Ma = 0.1) and air (Prandtl number, Pr = 0.71) is used as the working fluid. As the heating level rises, the shape and wavelength of the vortical structure undergo significant alterations. At Re = 250, the mode-B transition with a shorter spanwise wavelength and the mode-D transition with a longer wavelength are observed, respectively, for heating levels ε=0.0−0.2 and ε=0.8−1.0. Furthermore, for heating levels in the range 0.4≤ε≤0.6, an intermediate wavelength of the mode-E transition is detected. The temporal variation of fluid properties such as the force coefficient (CL, CD) and the Nusselt number (Nu) are shown at various heating levels. In addition, surface vorticity is examined in order to comprehend the flow dynamics near the surface of a heated square cylinder.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献