Lensfree time-gated photoluminescent imaging

Author:

Baker Maryam1ORCID,McLeod Euan1ORCID

Affiliation:

1. Wyant College of Optical Sciences, University of Arizona , 1630 E. University Blvd., Tucson, Arizona 85721, USA

Abstract

Fluorescence and, more generally, photoluminescence enable high contrast imaging of targeted regions of interest through the use of photoluminescent probes with high specificity for different targets. Fluorescence can be used for rare cell imaging; however, this often requires a high space-bandwidth product: simultaneous high resolution and large field of view. With bulky traditional microscopes, high space-bandwidth product images require time-consuming mechanical scanning and stitching. Lensfree imaging can compactly and cost-effectively achieve a high space-bandwidth product in a single image through computational reconstruction of images from diffraction patterns recorded over the full field of view of standard image sensors. Many methods of lensfree photoluminescent imaging exist, where the excitation light is filtered before the image sensor, often by placing spectral filters between the sample and sensor. However, the sample-to-sensor distance is one of the limiting factors on resolution in lensfree systems and so more competitive performance can be obtained if this distance is reduced. Here, we show a time-gated lensfree photoluminescent imaging system that can achieve a resolution of 8.77 µm. We use europium chelate fluorophores because of their long lifetime (642 µs) and trigger camera exposure ∼50 µs after excitation. Because the excitation light is filtered temporally, there is no need for physical filters, enabling reduced sample-to-sensor distances and higher resolutions.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3