Higher cup products on hypercubic lattices: Application to lattice models of topological phases

Author:

Chen Yu-An1ORCID,Tata Sri2ORCID

Affiliation:

1. International Center for Quantum Materials, School of Physics, Peking University 1 , Beijing 100871, China

2. Department of Mathematics, Yale University 2 , New Haven, Connecticut 06511, USA

Abstract

In this paper, we derive the explicit formula for higher cup products on hypercubic lattices based on the recently developed geometrical interpretation on the simplicial complexes. We illustrate how this formalism can elucidate lattice constructions on hypercubic lattices for various models and derive them from spacetime actions. In particular, we demonstrate explicitly that the (3 + 1)D SPT S=12∫w22+w14 (where w1 and w2 are the first and second Stiefel-Whitney classes) is dual to the 3-fermion Walker-Wang model constructed on the cubic lattice. Other examples include the double-semion model and also the “fermionic” toric code in arbitrary dimensions on hypercubic lattices. In addition, we extend previous constructions of exact boson-fermion dualities and the Gu-Wen Grassmann integral to arbitrary dimensions. Another result that may be of independent interest is a derivation of a cochain-level action for the generalized double-semion model, reproducing a recently derived action on the cohomology level.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference39 articles.

1. Products of cocycles and extensions of mappings;Ann. Math.,1947

2. Variétés plongées et i-carrés;C. R. Seances Acad. Sci., Paris,1950

3. Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory;Phys. Rev. B,2014

4. R. G. Thorngren , “Combinatorial topology and applications to quantum field theory,” Ph.D. thesis, University of California, Berkeley (main), 2018.

5. S. Tata , “Geometrically interpreting higher cup products, and application to combinatorial pin structures,” arXiv:2008.10170 (2020).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3