Numerical study of ice accretion inside an inertial particle separator

Author:

Qiu Changbo1,Chen Ningli2ORCID,Hu Yaping2ORCID,Wang Biao2,Hu Songjun1

Affiliation:

1. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China

2. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

The inertial particle separator (IPS) installed before a helicopter engine runs the risk of ice accretion. This paper describes a numerical study of ice accretion inside an IPS. The effects of the droplet diameter (MVD = 5, 10, and 20 µm), liquid water content (LWC = 0.5, 2, and 4 g/m3), and incoming velocity ( U0 = 45, 60, and 90 m/s) on ice accretion are studied. The results show that ice accretes on the windward side of the hub, the bent surface of the shroud, and the leading edge of the splitter. The ice thickness on all the surfaces of the IPS generally increases with increasing U0, MVD, and LWC, with the exception that the ice layer thickness on the splitter surface decreases as the MVD increases. This exception arises because the mass of water droplets impinging on the upper surface of the splitter wall decreases with increasing MVD. The effect of ice accretion on the aerodynamic performance of the IPS is also studied. It is found that ice accretion can block the flow area of the “throat” and the inlet of the scavenge flow channel, thus modifying the aerodynamic shape of the inner surface of the IPS and the internal flow field. When MVD = 10 µm and LWC = 4 g/m3, the scavenge ratio after icing decreases with increasing ice thickness. With the exception of LWC = 0.5 g/m3, the total pressure recovery coefficient of the core flow path of the IPS obviously decreases as the ice layer thickens.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3