Crystallization kinetics from Ge-rich Ge–Sb–Te thin films: Influence of thickness

Author:

Hans Philipp1ORCID,Mocuta Cristian2ORCID,Le-Friec Yannick3ORCID,Boivin Philippe4ORCID,Simola Roberto4ORCID,Thomas Olivier1ORCID

Affiliation:

1. Aix Marseille Univ, Univ Toulon, CNRS, IM2NP UMR 1 , Marseille 7334, France

2. Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128 2 , Saint-Aubin 91190, France

3. STMicroelectronics 3 , 850 rue Jean Monnet, Crolles 38920, France

4. STMicroelectronics 4 , 190 Ave Coq, Rousset 13106, France

Abstract

The phase transition temperature and crystallization kinetics of phase-change materials (PCMs) are crucial characteristics for their performance, data retention, and reliability in memory devices. Herein, the crystallization behavior and kinetics of a compositionally optimized, N-doped Ge-rich Ge–Sb–Te alloy (GGST) in the slow crystallization regime are systematically investigated using synchrotron x-ray diffraction (XRD) in situ during heat treatment. Uniform thin films (50, 25, 10, and 5 nm) of initially amorphous N-doped GGST are investigated. The specimens were heated up to 450 °C at a rate of 2 °C/min to estimate crystallization onsets by quantifiying the crystallized quantity during material transformation from the XRD patterns. Subsequent isothermal anneals have been performed to assess crystallization behavior and activation energies. Nucleation-controlled crystallization that progresses in two steps is observed, together with the emergence of Ge preceding cubic Ge2Sb2Te5, with a mild dependence of crystallization temperature on film thickness that is inverse to what has been observed in other systems. Ge and GST crystallization may be described occurring in three-time stages: (i) an incubation period; (ii) a fast growth period; and (iii) a very slow-growth period. Very high activation energies (between 3.5 and 4.3 eV) for each phase are found for the incubation time t0. The activation energy for Ge in the fast growth regime is close to the one reported for the crystallization of pure Ge films. In the case of Ge, the incubation time is strongly thickness-dependent, which may have important consequences for the scaling of memories fabricated with this class of materials.

Funder

IPCEI/Nano 2022

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3