A versatile and customizable low-cost printed multipass microrheometer for high-throughput polymers rheological experimentation

Author:

Tammaro D.1ORCID,Maffettone P. L.1ORCID

Affiliation:

1. Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II , P.le Tecchio 80, Napoli I-80125, Italy

Abstract

We report the design of a multipass microrheometer that can be fully customizable at a low cost and reasonable time, which allows us to perform experiments rapidly and in a broad range of shear rates (i.e., from 0.1 to 100 s−1), using small amounts of material (i.e., just some milligrams). Additionally, the low-cost approach opens for an easy parallelization of the setup that makes it suitable for high-throughput rheological experimentation of polymer melts (HT-Rheo-E). The novel rheometer consists of a microchannel (i.e., a microcapillary or a microslit) in which the fluid flows driven by two controlled millimetric pistons (diameter of 2 mm). Two piezoelectric miniaturized pressure sensors are placed at the microchannel entrance and exit to record the pressure drop across the capillary during the motion. The current work reports the design of the rheometer with two different cross sections of the microchannel, i.e., circular and rectangular, and measurements of the shear viscosity with a Newtonian and a non-Newtonian polymer over a wide range of shear rates using less than 1 g of sample. We demonstrate that the current multipass microrheometer can measure viscoelastic properties of polymers by applying an oscillatory flow. The printed setup is of potential interest for applications in quality control in industrial production, in natural systems (such as starch-based mixtures) and academic research where rapid and repeated measurements using limited milligrams of polymer are required (e.g., biological systems).

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3