Self-organization toward 1/f noise in deep neural networks

Author:

Chong Nicholas Jia Le1ORCID,Feng Ling12ORCID

Affiliation:

1. Department of Physics, National University of Singapore 1 , Singapore 117551

2. Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) 2 , Singapore 13863

Abstract

In biological neural networks, it has been well recognized that a healthy brain exhibits 1/f noise patterns. However, in artificial neural networks that are increasingly matching or even out-performing human cognition, this phenomenon has yet to be established. In this work, we found that similar to that of their biological counterparts, 1/f noise exists in artificial neural networks when trained on time series classification tasks. Additionally, we found that the activations of the neurons are the closest to 1/f noise when the neurons are highly utilized. Conversely, if the network is too large and many neurons are underutilized, the neuron activations deviate from 1/f noise patterns toward that of white noise.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3