Droplets impact against the random rough surface with a liquid film

Author:

Abstract

Aero-engine fouling will affect the economy and safety of aircraft, and online washing is the main method to solve the problem of aero-engine fouling. Online washing is considered to be the removal of fouling particles by the impingement of droplets on a flowing liquid film. Here, we simulate a flowing liquid film of droplets impinging on a randomly rough surface to predict the removal of fouling particles. We considered the situation that the horizontal flow velocity of the liquid film is between 5 and 20 m/s and the thickness of the liquid film is 5–20 μm. An analysis of the droplet impact velocity field, radial velocity, and extension length shows that the vortex strength, radial velocity, and extension length all increase with increasing liquid film flow velocity, while increasing liquid film thickness inhibits the growth. Moreover, we constructed a fouling particle detachment model to evaluate the effects of different liquid film flow velocities and film thicknesses on particle removal. A particle removal plot shows the dominance of liquid film flow velocity stations. This study not only reveals the removal process of fouling particles on random rough surfaces but also provides insight into the optimization of spray cleaning process parameters.

Funder

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3