Implications of dragonfly's muscle control on flapping kinematics and aerodynamics

Author:

Liu Di1ORCID,Hefler Csaba1ORCID,Shyy Wei1ORCID,Qiu Huihe1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

In this work, we designed and characterized a passive structural wing actuation setup that was able to realistically mimic the flapping and pitching kinematics of dragonflies. In this setup, an inelastic string limited the wing pitch that may be sufficiently simple for practical micro air vehicle applications. To further evaluate the dominance of inertial passive and active muscle-controlled pitch actuation in dragonfly flight, the flow fields and pitching angle variations of the naturally actuated wing of a tethered dragonfly were compared with that of the same wing artificially actuated via a proposed passive mechanism. We found that passive rotation characterizes most of the forewing flapping cycle except the upstroke reversal where the dragonfly uses its muscle movement to accelerate its forewing rotation. The measured flow fields show that accelerated wing rotation at the upstroke reversal will result in a stronger leading edge vortex during the downstroke, the additional force from which is estimated to account for 4.3% of the total cycle averaged force generated.

Funder

Research Grants Council, University Grants Committee

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3