The paradigm of magnetic molecule in quantum matter: Slow molecular spin relaxation

Author:

Sirenko Valentyna1,Bartolomé Usieto Fernando23ORCID,Bartolomé Juan2ORCID

Affiliation:

1. B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine 1 , Kharkiv 61103, Ukraine

2. Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza 2 , Zaragoza 50009, Spain

3. Head of the Spanish Embassy Education Office Ministry of Education in the United Kingdom and Ireland 3 , Spanish Embassy Education, London W8 7PD, United Kingdom

Abstract

The quantum nature of single-ion magnets, single-molecule magnets, and single-chain magnets has been manifested among other phenomena by magnetic hysteresis due to slow spin relaxation, competing with fast quantum tunneling at low temperatures. Slow spin relaxation, described by Arrhenius-type law with the effective barrier energies Ueff = 50 cm–1, was discovered 3 decades ago in paramagnetic Mn12-acetate complex of oxy-bridged mixed-valence manganese ions, below the blocking temperature TB = 3 K. In contrast to common magnetic materials, it is governed primarily by magnetic anisotropy, set by zero-splitting of spin states of a magnetic ion in a field of ligands, and spin-lattice coupling. The emerging studies on the border of coordination chemistry, physics of spin systems with reduced dimensionality, and nanotechnologies, were performed in search of routes for enhancement of Ueff and TB characteristics, in line with increase of operation temperature and quantum correlation time, mandatory for quantum applications. The best results with TB ∼ 80 K and Ueff ∼ 1261 cm–1, were obtained for DyIII single-ion magnet, so far. Numerous excellent research and review articles address particular activities behind this achievement. It follows, that present challenges are dictated by the rational development of novel, smart magnetic molecules, featured by butterfly cores, cyano-bridges, 2D metal-organic frameworks, and metal-free graphene nanoclusters, as well as stable free radicals, magnetized by spare electrons. These species are briefly considered here with respect to the unique experience of international collaborative activity, established by Prof. Juan Bartolomé.

Publisher

AIP Publishing

Reference117 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polyamorphism gets a magnetic boost;Low Temperature Physics;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3