Laser spot thermography for defect detection on mild steel at higher temperatures (30–600 °C)

Author:

Puthiyaveettil Nithin1ORCID,Rajagopal Prabhu1ORCID,Balasubramaniam Krishnan1ORCID

Affiliation:

1. Centre of Non-Destructive Evaluation—CNDE, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036 Chennai, India

Abstract

This paper studies the performance of laser spot thermography (LST) in defect detection on a mild steel sample at different temperatures (30–600 °C). In laser spot thermography, a laser spot is used to scan over the surface of the sample and the thermal profile is monitored using a thermal camera. For checking the feasibility/capability of laser spot thermography in defect detection under higher temperatures, a three-dimensional numerical model is developed using a commercial FE software package. This FE model is used to understand the heat transfer phenomenon during defect detection at higher temperatures, even after oxidation temperature. The influence of the oxide layer formation (scale) at higher temperatures (above 500 °C) in defect detection is established using the validated model. The thermal properties and optical properties of this oxide layer are different from those of the base metal; this will lead to a drastic variation in the thermal profile after the oxidation temperature. An oxide layer at 600 °C is introduced in the improved numerical model as a thin resistive layer at the top surface with a thickness of 50  μm. The thermal properties of the layer are assigned as the scale properties. FE modeling results show better agreement with experimental results even at 600 °C. Thus, the applicability of LST in high temperatures is experimentally proved.

Funder

Indo-German Science and Technology Centre

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3