Lock-in thermographic study of spin-wave propagation in magnonic crystals

Author:

Iguchi Ryo1ORCID,Vasyuchka Vitaliy I.2ORCID,Hillebrands Burkard2ORCID,Uchida Ken-ichi13ORCID

Affiliation:

1. National Institute for Materials Science, Tsukuba 305-0047, Japan

2. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern 67663, Kaiserslautern, Germany

3. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Abstract

We have investigated the spin-wave dynamics in a one-dimensional magnonic crystal (MC) with respect to the heat radiation due to the damping of the spin waves. The spin waves were excited by applying microwaves via a wire antenna. The heat induced by the excitation and propagation of spin waves was measured using the lock-in thermography (LIT) technique by periodically modulating the microwave power. The LIT measurements resolved the heat source distributions inside the MC, which is made of an yttrium iron garnet film and periodic grooves with a sub-mm interval, in the backward volume wave geometry. The temperature distribution induced by the spin-wave excitation notably depends on the frequency or wave number of the spin waves, as a result of the formation of rejection bands in the MC. The observed temperature modulation profiles are complicated, but their behavior is consistent with a calculation based on the microwave transmission line approximation of the MCs, demonstrating the applicability of the LIT measurements to the investigation of the spin-wave dynamics in sub-mm scale MCs.

Funder

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in magnonics;Journal of Applied Physics;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3