1D graphene nanoribbons-mediated defect engineering in 2D MXene for high-performance supercapacitors

Author:

Mahajan Parika1ORCID,Sardana Sagar1ORCID,Mahajan Aman1ORCID

Affiliation:

1. Department of Physics, Guru Nanak Dev University , Amritsar 143005, India

Abstract

Carbon-based supercapacitors have been extensively explored by the virtue of their exceptional performance in terms of charge-storage capacity, electrical conductivity, and good stability. However, the rush to find potential approaches for increasing their specific capacitance and specific energy without adversely affecting the specific power is still exciting. Herein, we synthesized hierarchically structured carbon-based composites based on 2D MXene sheets with an interconnected conductive porous network of 1D graphene nanoribbons (GNRs). Synergistic effects arising due to the defect engineering of 2D MXene sheets with 1D GNRs led to high surface-area, effective ion-transport, and improved structural robustness of the composite electrodes, thereby enhancing the specific capacitance along with specific energy of device while preserving its specific power. The electrochemical studies revealed that the composites with 1 wt.% GNRs (GMX-B) outperformed when the composition of GNRs was varied from 0.5 to 1.5 wt. % in MXene (GMX-A, GMX-B, and GMX-C). In comparison to pristine MXene and pristine GNRs, GMX-B exhibited ∼2.54 and ∼2.74 folded higher capacitance of 238.96 F/g at 0.6 A/g current density, respectively, a higher capacitance retention of 72.16% for a scan rate from 10–140 mV/s as well as a good cyclic stability of 85.11% over 10 000 charge/discharge cycles. Furthermore, GMX-B electrode achieved a high specific energy of 4.066 Wh/Kg while maintaining a specific power of 210.640 W/Kg as compared to pristine MXene (1.597 Wh/Kg at 211.989 W/Kg) and pristine GNRs (1.482 Wh/Kg at 211.089 W/Kg). Thus, we anticipated that the use of hierarchically engineered 1D/2D carbon-based composites with considerable improvement in its interfacial properties holds great potential to achieve high-performing energy-storage devices.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3