Impact of random and targeted disruptions on information diffusion during outbreaks

Author:

Masoomy Hosein1ORCID,Chou Tom2ORCID,Böttcher Lucas3ORCID

Affiliation:

1. Department of Physics, Shahid Beheshti University 1 , 1983969411 Tehran, Iran

2. Department of Computational Medicine and Department of Mathematics, UCLA 2 , Los Angeles, California 90095, USA

3. Department of Computational Science and Philosophy, Frankfurt School of Finance and Management 3 , 60322 Frankfurt am Main, Germany

Abstract

Outbreaks are complex multi-scale processes that are impacted not only by cellular dynamics and the ability of pathogens to effectively reproduce and spread, but also by population-level dynamics and the effectiveness of mitigation measures. A timely exchange of information related to the spread of novel pathogens, stay-at-home orders, and other measures can be effective at containing an infectious disease, particularly during the early stages when testing infrastructure, vaccines, and other medical interventions may not be available at scale. Using a multiplex epidemic model that consists of an information layer (modeling information exchange between individuals) and a spatially embedded epidemic layer (representing a human contact network), we study how random and targeted disruptions in the information layer (e.g., errors and intentional attacks on communication infrastructure) impact the total proportion of infections, peak prevalence (i.e., the maximum proportion of infections), and the time to reach peak prevalence. We calibrate our model to the early outbreak stages of the SARS-CoV-2 pandemic in 2020. Mitigation campaigns can still be effective under random disruptions, such as failure of information channels between a few individuals. However, targeted disruptions or sabotage of hub nodes that exchange information with a large number of individuals can abruptly change outbreak characteristics, such as the time to reach the peak of infection. Our results emphasize the importance of the availability of a robust communication infrastructure during an outbreak that can withstand both random and targeted disruptions.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3