Open-source device for high sensitivity magnetic particle spectroscopy, relaxometry, and hysteresis loop tracing

Author:

Mattingly E.1ORCID,Barksdale A. C.2ORCID,Śliwiak M.3ORCID,Chacon-Caldera J.3ORCID,Mason E. E.3ORCID,Wald L. L.3ORCID

Affiliation:

1. Massachusetts Institute of Technology, Health Sciences and Technology 1 , Cambridge, Massachusetts 02139, USA

2. Massachusetts Institute of Technology, Electrical Engineering and Computer Science 2 , Cambidge, Massachusetts 02139, USA

3. Martinos Center for Biomedical Imaging, Massachusetts General Hospital 3 , Boston, Massachusetts 02129, USA

Abstract

Magnetic nanoparticles (MNPs) are used extensively across numerous disciples, with applications including Magnetic Particle Imaging (MPI), targeted hyperthermia, deep brain stimulation, immunoassays, and thermometry. The assessment of MNPs, especially those being designed for MPI, is performed with magnetic particle spectrometers, relaxometers, loop tracers, or similar devices. Despite the many applications and the need for particle assessment, there are few consolidated resources for designing or building such a MNP assessment system. Here, we describe the design and performance of an open-source device capable of spectroscopy, relaxometry, and loop tracing. We show example measurements from the device and quantify the detection sensitivity by measuring a dilution series of Synomag-D 70 nm (from 0.5 mg Fe/ml to 7 ng Fe/ml) with a 10 mT drive field at 23.8 kHz. The device measures 260 pg Fe with SNR = 1 and 1.3 ng at SNR = 5 in spectroscopy mode in under one second of measurement time. The system has a dynamic range of 60 μg to 260 pg Fe without changing the hardware configuration. As an example application, we characterize Synomag-D’s relaxation time constant for drive fields 2–18 mT and compare the magnetization responses of two commonly used MNPs.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Science Foundation Graduate Research Fellowship Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3