Numerical study of droplet behavior passing through a constricted square channel

Author:

Gu QingqingORCID,Zhang JinggangORCID,Liu HaihuORCID,Wu LeiORCID

Abstract

Snap-off is a crucial mechanism for drop breakup in multiphase flow within porous media. However, the systematic investigation of snap-off dynamics in constricted capillaries with varying pore and throat heights remains limited. In this study, we conducted three-dimensional simulations of drop behavior in a constricted square capillary with non-uniform depth, employing a color-gradient lattice Boltzmann model. Our analysis encompassed a comprehensive range of parameters, including geometrical factors and physical properties, such as capillary number, initial drop size, viscosity ratio, constriction length, and the presence of soluble surfactants. Depending on these parameters, the drop exhibited either breakup or deformation as it traversed the constriction. Upon snap-off occurrence, we quantified two significant aspects: the snap-off time t̂b, which represents the time interval between the drop front passing the constriction center and the snap-off event, and the volume of the first daughter drop V̂d generated by the breakup mechanism. Consistently, we observed a power-law relationship between t̂b and the capillary number Ca. However, the variation of V̂d with Ca exhibited a more complex behavior, influenced by additional factors, such as the viscosity ratio and the presence of surfactants, which break the linear increase in V̂d with Ca. Notably, the inclusion of surfactants is able to homogenize the volume of the first daughter drop. Through our comprehensive numerical study, we provide valuable insight into the snap-off process in constricted capillaries. This research contributes to the understanding of multiphase flow behavior and facilitates the optimization of processes involving snap-off in porous media.

Funder

National Natural Science Foundation of China

Major Special Science and Technology Project of the Inner Mongolia Autonomous Region

Shanghai Pujiang Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3