Transition characteristics, fluctuation evolution, and the role of coherent mode in electron cyclotron resonance heated low to high mode transition in KSTAR

Author:

Jhang Hogun1ORCID,Choi Minjun J1ORCID,Kim Hyun-Seok1ORCID

Affiliation:

1. Korea Institute of Fusion Energy , 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea

Abstract

An experimental study is conducted on macro- and microscopic characteristics of low to high (LH) transition acquired by electron cyclotron resonance heating (ECRH) in KSTAR. A scan of pre-transition density demonstrates the existence of the characteristic minimum density, which requires minimum power to make LH transition. The minimum density in KSTAR shows a tendency to be lower than that evaluated from an empirical scaling law proposed by Ryter et al. [Nucl. Fusion 54, 083003 (2014)]. A comprehensive study of the evolution of low wavenumber electron temperature fluctuations is carried out using electron cyclotron emission imaging diagnostics. An analysis of the fluctuation amplitude in L-mode in terms of the electron collisionality and the electron temperature scaling length suggests that the dissipative trapped electron mode is likely to be a dominant instability before the LH transition. The fluctuation amplitude reduces first as the transition starts. A coherent mode that chirps down from 60 to 20 kHz emerges when the transition further develops. This coherent mode is then shown to revive turbulence that has been reduced significantly during the initial stage of the LH transition. The revival of turbulence could be a possible origin of the absence of the large edge localized mode when the coherent mode is persistent in ECRH-induced H-mode plasmas.

Funder

Ministry of Science and ICT, South Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3