Impact of pearl-necklace-like skeleton on pore sizes and mechanical properties of porous materials: A theoretical view

Author:

Rege Ameya12ORCID,Aney Shivangi1ORCID,Ratke Lorenz1

Affiliation:

1. Department of Aerogels and Aerogel Composites, Institute of Materials Research, German Aerospace Center, Linder Höhe 51147, Cologne, Germany

2. School of Computer Science and Mathematics, Keele University, Staffordshire ST5 5BG, United Kingdom

Abstract

The structural and mechanical properties of open-porous cellular materials are often described in terms of simple beam-based models. A common assumption in these models is that the pore walls have a constant cross section, which may be in agreement for a vast majority of such materials. However, for many of those materials that are characterized by a pearl-necklace-like network, this assumption seems too idealized. Aerogels are perfect examples of such materials. In this paper, we investigate the effect of such pore walls having a string of pearls-like morphology on the properties of such open-porous materials. First, the pore size is mathematically modeled. Three scenarios are described, where the pore sizes are calculated for cells in 2D, 3D, and 3D with overlapping particles. The dependency of the skeletal features on the resulting pore size is investigated. In the second part, pore walls with 3D overlapping spheres are modeled and subjected to axial stretching, bending, and buckling. The effect of the particle sizes and the amount of overlap between the particles on the mechanical features is simulated and illustrated. The results are also compared with models that assume a constant cross section of pore-walls. It can be observed that neglecting the corrugations arising from the pearl-necklace-like morphology in open-porous cellular materials can result in serious miscalculations of their mechanical behavior. The goal of this paper is not to quantify the bulk mechanical properties of the materials by accounting for the pearl-necklace-like morphology but rather to demonstrate the significant deviations that may arise when not accounted for.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3