Falling film hydrodynamics and heat transfer under vapor shearing from various orientations

Author:

Zhao Chuang-YaoORCID,Li Qiong-Tao,Zhang Fang-FangORCID,Qi DiORCID,Yildizhan Hasan12,Jiang Jun-Min

Affiliation:

1. Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London 3 , London SW7 2AZ, United Kingdom

2. Engineering Faculty, Energy Systems Engineering, Adana Alparslan Türkeş Science and Technology University 5 , Adana, Turkey

Abstract

Vapor shearing is a common issue encountered in the operations of falling film heat exchangers. The vapor stream effect depends on its orientation. This study investigates liquid film hydrodynamics and heat transfer performance under the influence of vapor streams from different orientations. The results indicate that both orientation and velocity of vapor determine the encountering time and position of the films on the tube's two sides. The liquid film thickness uniformity and the liquid column deflection vary significantly depending on the orientation and velocity of the vapor. Zones of accelerated liquid film, climbing liquid film, liquid stagnation, and transition of liquid film flow pattern are observed. The gradient of film thickness along the tube axis and the deflection in time-averaged peripheral film thickness increase as the vapor orientation varies from 0° to 90° and subsequently decrease as the vapor orientation varies from 90° to 180°. Vapor streams have more pronounced effects on time-averaged peripheral film thickness in regions close to the liquid inlet and outlet. Vapor streams result in changes in peripheral heat transfer coefficients toward the downstream side depending on the orientation and velocity of the vapor. The impact of vapor streams on the overall heat transfer coefficient does not directly correlate with the velocity of the vapor when maintaining the same orientation.

Funder

National Natural Science Foundation of China

Youth Innovation Team of Shaanxi Universities

International Joint Research Center for Building Service and the Underground Space Environment, Shaanxi

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3