Refining and relating fundamentals of functional theory

Author:

Liebert Julia12ORCID,Chaou Adam Yanis123ORCID,Schilling Christian12ORCID

Affiliation:

1. Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München 1 , Theresienstrasse 37, 80333 München, Germany

2. Munich Center for Quantum Science and Technology (MCQST) 2 , Schellingstrasse 4, 80799 München, Germany

3. Dahlem Center for Complex Quantum Systems and Institut für Physik, Freie Universität Berlin 3 , Arnimallee 14, 14195 Berlin, Germany

Abstract

To advance the foundation of one-particle reduced density matrix functional theory (1RDMFT), we refine and relate some of its fundamental features and underlying concepts. We define by concise means the scope of a 1RDMFT, identify its possible natural variables, and explain how symmetries could be exploited. In particular, for systems with time-reversal symmetry, we explain why there exist six equivalent universal functionals, prove concise relations among them, and conclude that the important notion of v-representability is relative to the scope and choice of variable. All these fundamental concepts are then comprehensively discussed and illustrated for the Hubbard dimer and its generalization to arbitrary pair interactions W. For this, we derive by analytical means the pure and ensemble functionals with respect to both the real- and complex-valued Hilbert space. The comparison of various functionals allows us to solve the underlying v-representability problems analytically, and the dependence of its solution on the pair interaction is demonstrated. Intriguingly, the gradient of each universal functional is found to always diverge repulsively on the boundary of the domain. In that sense, this key finding emphasizes the universal character of the fermionic exchange force, recently discovered and proven in the context of translationally invariant one-band lattice models.

Funder

Deutsche Forschungsgemeinschaft

Munich Quantum Valley

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3